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PREFACE 

International Conference on Engineering Technologies (ICENTE'19) was organized in Konya, Turkey on 

25-27 October 2019.  

The main objective of ICENTE’19 is to present the latest research and results of scientists related to 

Electrical and Electronics, Biomedical, Computer, Civil, Mechanical, Mechatronics, Metallurgical and Materials 

Engineering fields. This conference provides opportunities for the delegates from different areas in order to 

exchange new ideas and application experiences, to establish business or research relations and to find global 

partners face to face for future collaborations. 

All paper submissions have been double blind and peer reviewed and evaluated based on originality, 

technical and/or research content/depth, correctness, relevance to conference, contributions, and readability. 

Selected papers presented in the conference will be published in the Journal of Selcuk Technic if their content 

matches with the topics of the journal.  

At this conference, there are 203 paper submissions. Each paper proposal was evaluated by two reviewers. 

And finally, 123 papers were presented at the conference from 8 different countries (Albania, Azerbaijan, 

Bulgaria, Crotia, Iraq, Macedonia, Latvia, Turkey).  

In particular, we would like to thank Prof. Dr. Mustafa SAHIN, Rector of Selcuk University; Prof. Dr. 

Prof. Dr. Jurgis Porins, Riga Technical University (RTU); Prof. Dr. Tzvetomir Vassilev, University of Ruse; 

Journal of Selcuk Technic. They have made a crucial contribution towards the success of this conference. Our 

thanks also go to the colleagues in our conference office. 

 

Ismail SARITAS – Mehmet CUNKAS – Fatih BASCIFTCI 

Editors  
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Abstract - The aim of this study is to determine the success 
of the feature vector (FV) that was obtained by a variety of 
feature extraction methods and the success of the eigenvalues 
that were obtained by Principal Component Analysis (PCA). 
EEG signals (EEGs) that were collected retrospectively from 
Selcuk University Faculty of Medicine Hospital were used in 
this study. Feature vector was obtained from 30 epilepsy 
patients and 30 normal via statistical methods and discrete 
wavelet transform (DWT). Dimensions of these feature vectors 
were reduced via Principal Component Analysis (PCA) 
method. Four eigenvectors with the highest relationship that 
include 71, 52, 33 and 15 according to PCA correlation matrix 
were included in the study. The performances of the 
eigenvectors were calculated and compared using an Artificial 
Neural Network (ANN). Performance evaluation of the used 
ANN algorithm were carried out by performi ng Receiver 
Operation Characteristic (ROC) analysis. Experimental results 
have shown that eigenvector 3 (EV3) including 33 features is 
more successful than the other feature vector and eigenvectors 
with 93.67% training and 88.30% test. Furthermore, the 
performance of all eigenvectors was observed to be higher than 
the performance of the feature vector. As a consequence, the 
use of more meaningful eigenvectors improves the 
classification performance instead of high-dimensional feature 
vectors.  
 

Keywords - Electroencephalogram, Discrete Wavelet 
Transforms, Principal Component Analysis, Artificial Neural 
Network, epilepsy. 

 

I. INTRODUCTION 

Epilepsy is a common neurological disorder that is 
characterized by occurrence of recurrent seizures [1]. There 
are a lot of methods to automatically classify the seizures on 
EEGs without spending long hours for visual control [2]. 
The major steps of these methods are the feature 
�H�[�W�U�D�F�W�L�R�Q���V�H�O�H�F�W�L�R�Q�� �D�Q�G�� �W�K�H�� �F�O�D�V�V�L�¿�F�D�W�L�R�Q�� �W�K�D�W�� �F�R�Q�V�W�L�W�X�W�H�� �D��
pattern recognition process. Feature extraction/selection 
plays an important role in classifying systems such as neural 
�Q�H�W�Z�R�U�N�V���� �,�W�� �V�L�J�Q�L�¿�F�D�Q�W�O�\�� �F�R�Q�W�U�L�E�X�W�H�V�� �W�R�� �W�K�H�� �S�H�U�I�R�U�P�D�Q�F�H�� �R�I��
the c�O�D�V�V�L�¿�H�U�� �D�Q�G�� �U�H�G�X�F�H�V�� �G�D�W�D�� �V�L�]�H�� �Z�L�W�K�R�X�W�� �O�R�V�L�Q�J�� �L�W�V��
distinguishing power. It has been noticed that the accuracy 
�R�I���F�O�D�V�V�L�¿�F�D�W�L�R�Q���H�Q�W�L�U�H�O�\���G�H�S�H�Q�G�V���R�Q���W�K�H���V�H�O�H�F�W�L�R�Q���I�H�D�W�X�U�H�V���W�R��
be applied on the EEG time series [3]�±[5]. Therefore, the 
aim of this study is;  

- To determine the success on the classification of the 
different eigenvectors, 

- To identify the superiority of the feature vectors and 
eigenvectors. 

In that context, some features were extracted by using 
different feature extracting methods. While, the statistical 

features including minimum, maximum, mean, median, 
interquartile range, standard deviation, range, variance, 
kurtosis and skewness were extracted by using statistical 
functions, power of sub-bands in time domain was 
decomposed by using DWT. PCA feature selection method 
was utilized in order to reduce the feature vector size. The 
rest of this paper is organized as follows: data selection, 
feature extraction/selection, classifiers are introduced in 
Section 2. The experimental results and discussion for the 
c�O�D�V�V�L�¿�F�D�W�L�R�Q�� �R�I��epileptic and normal EEGs are given in 
Section 3. Finally, Section 4 gives the conclusions and 
future work. 

II. MATERIALS AND METHODS 

A. Data Acquisition 

We collected the EEG data that was recorded in the 
Department of Neurology. It is used with decision of Selcuk 
University Faculty of Medicine Hospital (Non-Invasive 
Clinical Research Ethics Committee No. 2014/423). EEGs 
of 60 subjects (30 epilepsies, 30 normal) that were collected 
between 2012 and 2015 were used in the study. All of the 
EEGs were obtained from routine EEG recording and all 
subjects were awake.  The mean age of 30 epilepsy patients 
was 38 (14 males, 16 female) and mean age of 30 normal 
patients was 46 (14 males, 16 female). EEG signals were 
recorded with 18 channels and 200 sampling frequency. An 
epoch (page) contains 3000 (200 x 15) sampling because 
every epoch is 15 seconds.  

Recording times is different from each other due to the 
fact that the situation of each subject in recording time is 
different. Moreover, dataset showing epileptic activity that 
is determined by specialists are selected. This dataset was 
created EEGs that include various waves such as sharp 
wave, spike, spike and slow wave, multiple spike and slow 
wave complex. In this study, we just used 5 epochs that are 
both epileptic and normal patients and the length of each 
epoch was composed of 3000 samples. 300 segment data for 
60 subjects were obtained as a result of calculations and 
adjustments. Whereas a value of 1 is given for 150 epileptic 
data, a value of 0 is given for 150 normal data in order to 
classify. 

B. Feature Extraction 

1. Discrete Wavelet Transform 

Wavelet Transform (WT) for time-scale analysis is a 
�S�R�Z�H�U�I�X�O�� �P�H�W�K�R�G�� �I�R�U�� �W�K�H�� �V�L�J�Q�D�O�V�� �W�K�D�W�� �S�U�R�Y�L�G�H�� �D�� �X�Q�L�¿�H�G��
framework for different techniques [6], [7]. DWT is a series 
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of WT that have been successful in many works for pre-
analysis of the epileptic seizures detection unlike FFT, 
because EEGs is non-stationary [6]. DWT analyzes the 
signal at different frequency bands, with different 
resolutions by decomposing the signal into a coarse 
approximation and detailed information. Selection of 
suitable wavelet and the number of levels of decomposition 
are very important in the analysis of signals using DWT. 
The wavelet function selected was Daubechies  Wavelet 
with order 4, which was also proven to be the best suitable 
wavelet function for epileptic EEGs analysis [8].  

2. Statistical Features 

It is known that the number of feature has a direct impact 
on the success of classification. Therefore, the number of 
feature must be a number that describes the used database in 
the best way. Therefore, some statistical features were used 
in the study as well as the features obtained from the power 
of the sub-band in the time domain by using DWT. In 
accordance with this purpose, 10 features that include 
minimum, maximum, mean, median, interquartile range, 
standard deviation, range, variance, kurtosis, skewness of 
every channel were extracted from each EEG channel data 
as they were the most representative values to describe the 
original signals. Thus, as a result of obtaining the power of 
72 sub-bands and 180 statistical features by the feature 
extraction method, 252 feature spaces were obtained. Since 
the number of example in the study is 300, (5 epochs of 60 
patient) database that consists of a matrix of 300 x 252 was 
obtained. All feature vectors were computed by the usage of 
the Matlab (Version 7.11, R2010b) software package 
because the features were required to be determined to 
achieve results faster and more accurately.  

C. Dimension Reduction by Principal Component 
Analysis 

Selection of the proposed model inputs is very important 
because it will affect the performance of classifier [9]. 
Meanwhile, it is very crucial that the number of inputs in the 
system which is classifier method must have been selected 
very carefully. In that context, if the number of inputs is 
selected unnecessarily high, performance of the system 
might decrease because of difficulty of the calculation of the 
network. On the other hand, if the number of inputs is 
selected unnecessarily low, the system may not give the 
result accurately and confidently. As a consequence, 
selection of the number of inputs was very significant for 
these systems [10].  

PCA is mathematically defined as an orthogonal linear 
transformation that transforms the data to a new coordinate 
system such that the greatest variance by some projection of 
the data comes to lie on the first coordinate (called the first 
principal component), the second greatest variance on the 
second coordinate, and so on [11]. PCA can be used for 
dimensionality reduction in a dataset while retaining those 
characteristics of the dataset that contribute most to its 
variance, by keeping lower-order principal component and 

ignoring higher-order one. Such low-order components 
�R�I�W�H�Q�� �F�R�Q�W�D�L�Q�� �W�K�H�� �µ�P�R�V�W�� �L�P�S�R�U�W�D�Q�W�¶�� �D�V�S�H�F�W�V�� �R�I�� �W�K�H�� �G�D�W�D���� �E�X�W��
this is not necessarily the case, depending on the application. 
PCA has the distinction of being the optimal linear 
transformation for keeping the subspace that has largest 
variance. This advantage, however, comes at the price of 
greater computational requirement if compared, for 
example, to the discrete cosine transform. Unlike other 
linear transforms, the PCA does not have a fixed set of basis 
vectors. Its basis vectors depend on the data set  [12]. 

D. Artificial Neural Network (ANN) 

ANN consists of three layers that include input, hidden 
and output layers. The aim of hidden layer is process and 
transmits from the input information to the output layer [13], 
[14], [15]. The input is processed and relayed from one layer 
to the other, until the final result is computed. As shown in 
Figure 1, a feedforward backpropagation ANN was used for 
classification. In addition, the hyperbolic tangent sigmoid 
transfer function was used in the entire neuron units has 
been shown in Figure 2. 

 
 

Figure 1:  The general structure of feedforward backpropagation 
neural network.  

 
 

 
Figure 2:  The hyperbolic tangent sigmoid transfer function

 
  
 
. 
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III.  RESULTS AND DISCUSSION 

In this study, we used 5 epochs for each record that was 
taken from Selcuk University Faculty of Medicine Hospital, 
the Department of Neurology in view of the different 
recording times. 3000 (200 x 15) samples for each patient 
were obtained since the fact that 1 second includes 200 
sampling frequency and each epoch includes 15 seconds. 
Therefore, 300 x 3000 dataset were obtained for 30 
epilepsies and 30 normal patients.  

The number of decomposition levels is chosen based on 
the dominant frequency components of the signal. The 
levels are chosen such that those parts of the signal that 
correlate well with the frequencies required for classification 
of the signal are retained in the wavelet coefficients [16]. 
The results of the studies in literature have demonstrated 
that the WT is the most promising method to extract features 
from the EEG signals [13], [17], [18]. Therefore, in this 
study, DWT was applied for time-frequency analysis of 
EEG signals for the classification using wavelet coefficients. 
EEG signals were decomposed into sub-bands using DWT.  

The value of 1 for the output of epilepsy patients and the 
value of 0 for the out of normal patients is given in the 
dataset. 252 feature vectors were obtained by performing 
statistical features including min, max, mean, median, iqr, 
range, std, var, kurtosis, skewness were extracted and sub-
band features were decomposed fifth-level packet 
decomposition using DWT via Matlab software. Prior to 
reducing the size of this feature vector by applying PCA, 
252 (180 statistical features, 72 the power of the sub-band 
by DWT) properties were obtained using different feature 
extraction methods.  

The number of the feature vectors has a direct impact on 
both the performance and speed of the classifier.  Speed of 
the classifier substantially decreases in the classification that 
is performed by using 252 features obtained in this study, 
while the success of classification reduces. Hence, PCA is 
used for dimension reduction of the features from all data 
set by the variances in the PCA space. We found out that the 
eight eigenvalues of the PCA contain 97 % (the ones under 
1000) of the information of the eigenspace (PCA space) and 
252 dimension can be expressed using only 33 dimensions. 
�7�K�H�U�H�I�R�U�H���� �W�K�H�� �F�O�D�V�V�L�¿�H�U�� �G�R�H�V�� �Q�R�W�� �U�H�F�H�L�Y�H�� �U�H�G�X�Q�G�D�Q�W��
information through this approach.  

According to sorting of eigenvalues, the impact on 
classification is observed by using the first meaningful 
eigenvectors. In that context, 71, 52, 33 and 15 neurons have 
been choosing for new features by means of using latent 
vector. Eigenvectors and the number of the attributes that 
were obtained according to correlation matrix are given in 
Figure 3. 

ANN is used to compare the performance of feature 
vector and eigenvectors. While hyperbolic tangent sigmoid 
transfer function is used for activation function of all 
neurons in the network, the backpropagation algorithm, 
which is based on searching an error surface using gradient 
descent for points with minimum error, is relatively easy to 
implement. Classification algorithm is carried out by 
changing some of the parameters such as hidden layer 
neurons number and so on.  Different neuron numbers for 

the hidden layer were tested and 10 was found to be most 
suitable number. The optimum values that were used in the 
classification performing by ANN in this study are given in 
the Table 1.    

 

 
Figure 3: The chart of eigenvectors after applying PCA to FV. 

Table 1: Training parameters for ANN. 

Parameters Values 
Error tolerance 0.001 
Transfer function Tangent sigmoid 
Maximum epoch 500/1000 
Input neurons 252/71/52/33/15 
Output neuron 1 
Hidden neurons 10 
Bias 1 

 
In order to identify the correctness of the diagnosis, the 

concepts of sensitivity  (SEN) and specificity (SPE) were 
utilized. The definitions of these concepts were given by the 
statements below, where TP (true positive), TN (true 
negative), FP (false positive), FN (false negative) stand for 
diagnosing illness when the patient is ill, diagnosing healthy 
person as healthy, diagnosing healthy person as ill and lastly 
diagnosing ill patient as healthy, respectively [19]; 

%100)/( xFNTPTPySensitivit ���     (1) 

%100)/( xFPTNTNySpecificit ���    (2) 

%1002/)( xySpecificitySensitivitAccuracy ���   (3) 

We evaluated true positive, true negative, false positive 
and false negative values as shown in confusion matrix of 
all feature vectors in Table 2. While columns represent 
predictions, row represent true classes in confusion matrix, 
every condition is shown by using code number, like in 0 
and 1 as normal and epilepsy. The number of correct 
predictions in the classification after training for FV is the 
lowest with 115 and 133. On the other hand, the highest 
number of correct predictions for EV3 was obtained with 
135 and 146 as shown in Table 2 d). At the same time, EV3 
is highly successful than FV and the other EV. On the 
contrary, we calculated separately sensitivity and specificity 
values that are statistical measures of the performance of a 
binary classification test. 
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Table 2: (a) The Confusion matrix of FV. (b) The Confusion matrix of EV1. (c) The Confusion matrix of EV2. (d) The Confusion matrix 
of EV3. (e) The Confusion matrix of EV4. 

(a)  True condition  (b)  True condition  (c)  True condition  

 FV 1 0     EV1 1 0    
 EV2 1 0    

Predicted 
condition 

1 115 17 132  Predicted 
condition 

1 134 13 147  Predicted 
condition 

1 132 8 140  
0 35 133 168  0 16 137 153  0 18 142 160  

   150 150 300     150 150 300  
   150 150 300  

 SEN =  0.767   SEN =  0.893   SEN =  0.880  

 SPE =  0.887   SPE =  0.913   SPE =  0.947  
          

(d) True condition  (e) True condition  

 

     

 EV3 1 0    
 EV4 1 0    

     
Predicted 
condition 

1 135 4 139  Predicted 
condition 

1 112 8 120  
     

0 15 146 161  0 38 142 180  
     

   150 150 300  
   150 150 300  

     
 SEN = 0.900   SEN = 0.747        

 SPE = 0.973   SPE = 0.947        

                  
The performance of the training and testing of all feature 

vectors is given in Table 3. There is no doubt that EV3 is the 
highest achievement than the other feature vectors with 
93.67% of the training success and 88.30% of the test 
success.  

Table 3: The performance of training and test for all features. 

 FV EV1 EV2 EV3 EV4 
Training  82.67% 90.33% 91.33% 93.67% 84.67% 
Test 76.70% 85.00% 86.70% 88.30% 83.30% 

 
The performance of training and testing is given in Table 

3. It is obvious that FV includes 252 features being the 
lowest with 82.67% training and 76.70% testing than the 
other EV. Furthermore, while classification accuracy 
increases from EV1 to EV3, the classification accuracy 
decreases after EV3. In other words, increasing 
classification accuracy was observed to decrease the number 
of features while the classification accuracy decreases fewer 
features than 33 features. As a result, the highest 
classification success can be obtained with the number 33 or 
close to 33. The classification successes of the training and 
tests of the Artificial Neural Network are given in Figure 4 
(a) and (b), respectively. In the graph (a), where the number 
of features and classification success is shown, the success 
of the EV vector with 252 features and the success of the 
EV4 vector with 15 features are very close to each other, but 
are lower than the success of other eigenvectors. On the 
other hand, when the number of features was 53 and 71, the 
success rate increased. However, the highest success value 
was obtained with FV3 which contains 33 properties. When 

the test graph was examined, it was observed that all feature 
vectors were more successful than the diminished PV with 
PCA. Classification was performed by using different values 
of training, test and validation for each dataset. 75% for 
training, 20% for test and 5% for validation were reserved 
on the dataset. The number of samples for training, test and 
validation and the value of Mean Square Error (MSE) that 
shows mean square difference between output and target in 
the classification results in Table 4. As it is known to all 
approaching the value 0 of the MSE shows the minimum 
error and the highest success. The lowest MSE value was 
obtained for EV3 in this study as seen in Table 4. In a 
different manner, the lowest MSE value for the test was 
found to be EV2. However, there is a small difference of 
0.0199 among the test values of EV2 and EV3. In this case, 
we can easily reach a conclusion that EV3 has the small 
MSE value for both training and testing. 

Receiver operating characteristics (ROC) graphs are 
useful for organizing the classifiers and visualizing their 
performance. ROC graphs are commonly used in medical 
decision making, and in recent years they have been used 
increasingly in machine learning and data mining research. 
Although ROC graphs are apparently simple, there are some 
common misconceptions and pitfalls when using them in 
practice [20]. By the help of these calculated values, the 
ROC curve has been drawn. After such a curve is drawn, the 
Area Under Curve (AUC) may be calculated. Higher values 
�R�I���W�K�H���µ�D�U�H�D���X�Q�G�H�U���W�K�H���5�2�&���F�X�U�Y�H�¶�����$�8�&�����P�H�D�V�X�U�H�V���L�Q�G�L�F�D�W�H��
better classifier performance [21].  
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Figure 4: The performances of Neural Network for all feature vectors. (a) Training Performance. (b) Test Performance. 
 

Table 4. MSE values and the number of samples of training, test 
and validation. 

 Training  Validation Test 
Samples 225 15 60 
MSE FV 1.27428E-01 1.12298E-01 1.48544E-01 
MSE EV1 6.36103E-02 7.20272E-02 1.17063E-01 
MSE EV2 7.00467E-02 3.18929E-02 9.28362E-02 
MSE EV3 4.73113E-02 6.69442E-02 9.48262E-02 
MSE EV4 1.11837E-01 2.07771E-01 1.26806E-01 

 
There is no doubt that the success of classifier is directly 

affected by the number of input values and the appropriate 
features. The aim of this study is to find the optimal number 
of features and features from EEG data that were collected 

retrospectively. The success and performances of feature 
vector and eigenvectors were tested, eigenvector that 
provides the highest success was determined. The high 
number feature reduced both speed and the success of the 
classifier. On the other hand, a high success could not be 
achieved with a small number of features. In this study, EV3 
was found to be appropriate eigenvector from EEGs that 
include epileptic activities and normal signals as shown in 
Figure 5. The success of the EV3 can be detected using 
different classifiers and classification of different datasets.  

 
 

 

(a) 
 

 

(b) 

 
 

Figure 5:  ROC graph of NN classifier for EV3. (a) Training ROC. (b) Test ROC. 
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IV. CONCLUSIONS 

Automated detection of EEGs is very important for 
determining of normal and epileptic activities preictal, 
interictal and ictal. We tried to identify the most appropriate 
features on EEGs of epilepsy and normal patients. Initially , 
252 features were extracted from the sub-bands obtained 
after the decomposition through the DWT and statistical 
methods. Principle component analysis was used for 
dimension reduction of EEG data in the study. High 
dimensional data and spatial redundancy reduced by PCA 
�U�H�F�R�J�Q�L�]�L�Q�J�� �¿�U�V�W�� �I�H�Z�� �S�U�L�Q�F�L�S�O�H�� �F�R�P�S�R�Q�H�Q�W�V�� Therefore, 
�H�[�F�H�V�V�L�Y�H���L�Q�I�R�U�P�D�W�L�R�Q���Z�D�V���Q�R�W���U�H�F�H�L�Y�H�G���W�R���F�O�D�V�V�L�¿ers through 
this reduction algorithm [22].  ANN algorithm was 
performed for detecting the best eigenvector. 

As is known, PCA is a method that gives the most 
relevant and relevant features in matrices with a large 
number of properties. With this method, the number of 
property vectors obtained by using different property 
extraction methods was reduced and the success of the 
classification vectors obtained was tested with ANN, which 
is one of the best classification methods. There is no doubt 
that the PCA method has greatly increased the success of 
data with such a large number of features. 
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Abstract �± Bone fractures are among the biggest health 

concerns in the world. Understanding the factors leading to bone 
fracture is the essential step to develop new strategies for dealing 
with this costly and deadly health problem. Studies published in 
recent years highlighted that all bone fractures are not only 
associated with low bone strength. In fact, fracture toughness, 
which is the material property focusing of resistance of the 
material to sudden and unstable growth of cracks, is an emerging 
field in bone research to better understand bone fragility 
associated with diseases and aging. Fracture toughness may be 
more closely associated with hip fractures and atypical femoral 
fractures which are two of the most common of bone fractures 
seen in the clinics. In this study, the possible association between 
fracture toughness and bone fractures was discussed in light of 
recently emerged studies. 
 

Keywords �± bone biomechanics, mechanical properties, 
fracture toughness, bone fracture 
 

I. INTRODUCTION 

one tissue is mainly composed of mineral, collagen, and 
water [1]. The unique hierarchical arrangement of these 

three main components at different scales provides bone a 
superior resistance to fracture (Figure 1) [1]. However, aging 
and diseases-related numerous changes in bone tissue and 
structure make the bone more brittle and vulnerable to 
fracture. Such alterations in bone matrix and structure cause 
mainly bone fractures-associated with less traumatic or non-
traumatic fractures such as falling from a standing distance. 
Such non-traumatic bone fractures, in fact, affect millions of 
people around the world and result in huge medical costs of 
more than $50 billion annually [2-4]. More critically, the 
mortality rate among elderly people because of bone fractures 
and subsequent complications is very high with 30% 
following the year of fracture [2-4]. In order to prevent these 
bone fractures, the mechanisms that cause bone fractures 
should be elucidated firstly, and then strategies to stop or 
reverse these mechanisms should be revealed. The 
mechanisms that cause bone fracture can be viewed from 
different perspectives such as molecular mechanisms or 
biomechanical mechanisms. From a biomechanical 
perspective, bone fractures are, in fact, a mechanical event that 
occurs when a bone is overloaded then it can bear. The 
biomechanical source of the resistance of bone to fracture is 
related to the bone mass or bone mineral density (BMD), the 
structural/morphological properties of the bone, and the 

material properties of bone tissue [1]. 
 

 
Figure 1: Bone fracture resistance or fracture toughness is not only 
associated with a single toughening mechanism. Changes in (A) 

collagen structure, (B) enzymatic and non-enzymatic modifications, 
(C) overall alterations in hydration and collagen structure, and (D) 

porosity are closely related to fracture toughness of bone.  
This figure is reused from [1]. 

 
BMD measured by double energy x-ray absorptiometry 

(DEXA) is currently used as the gold standard for the 
diagnosis of osteoporosis as well as the risk assessment of 
bone fracture. Although previous studies have shown that 
BMD is closely related to bone density and bone 
structural/morphological features [5], the relationship between 
BMD and bone material properties is limited. The material 
properties of bone are generally supposed to refer only 
strength of the bone, especially among researches with a non-
engineering background. In fact, bone strength is the value of 
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the maximum stress that bone specimens can withstand 
without breaking under a high amount of constant load during 
mechanical tests such as tensile, compression or bending tests. 
Since bone strength is easily obtained experimentally and its 
interpretation is relatively easy, bone strength is frequently 
used as an indicator of bone material quality by the 
researchers working in the field of bone research. However, 
researchers who do not have an engineering background have 
the misconception that deterioration of bone strength is the 
only cause of bone mechanical failure. Indeed, bone fractures 
in the clinic cannot be explained solely with the deterioration 
of the strength of the bone. Recent years have revealed that the 
fracture toughness of the bone is at least as important as the 
bone strength [6-10]. The aim of this critical review is to 
briefly introduce fracture toughness, which causes mechanical 
deficiency of bone, and to discuss its possible association with 
bone fractures. 

II. BRIEF DESCRIPTION OF FRACTURE TOUGHNESS  

Unlike the yield strength that evaluates a material's internal 
resistance to irreversible (plastic) deformation, fracture 
toughness is a measure of the resistance of a material to 
sudden and unstable growth of preexisting micro-cracks at the 
stress concentration. Stress concentrations (or so-called stress 
amplifiers) are the areas in which stress is increased due to 
sharp edges, large holes, the region of sudden shape changes, 
rapid changes in material properties, or pre-existing cracks. 
Such stress concentrated areas, which are abundant in bone 
naturally, are the main source of crack initiation. In order to 
prevent fracture, several toughening mechanisms such as 
uncoiling of the collagen molecules, collagen-fiber bridging, 
un-cracked ligament etc. (Figure 1) exist in the bone to 
increase the required energy for a crack growth, thereby 
increasing fracture toughness of bone [6-10]. However, age 
and diseases-related alterations in bone matrix and structure 
may also damage these toughening mechanisms, resulting in 
lower fracture toughness. Therefore, measuring the fracture 
toughness of bone has become one of the important aspects of 
bone biomechanics during the past decade [6-10]. 

The fracture toughness, which is calculated as the stress 
intensity at the tip of the primary crack leading to rapid 
unstable cracks, is generally confused with material̀s 
toughness. The toughness of the material is the amount of 
energy absorbed by a material before breaking and it is not 
necessarily to be a surrogate measure of fracture toughness.  In 
materials with low fracture toughness, such as glass and 
ceramics, the crack grows smoothly and rapidly and the 
material completely breaks down during the fracture event. On 
the other hand, in the case of polyethylene-type plastics with 
relatively high fracture toughness than glass and ceramic, the 
crack grows more slowly and does not shatter when the 
breaking event occurs. Similarly, crack growth is more 
torturous in the healthy bone due to the aforementioned 
toughening mechanisms (Figure 1) whereas a micro-crack can 
easily and suddenly grow into a huge size in unhealthy bone. 

III.  POSSIBLE ASSOCIATION OF FRACTURE TOUGHNESS WITH 
CLINICAL BONE FRACTURE 

Bone fractures can be caused by a single high impact load 
such as a fall from the standing height when walking, as well 
as by the loads that the bones are subjected to during the daily 
activities [11]. Therefore, looking at the possible load regime 
of bone exposed during the daily life could provide insight 
into understanding the possible relationship of material 
properties to bone fractures. Human bones can be exposed to 
large loads once or more a year as a result of falling from 
standing height, as mostly occurring among the elderly people, 
with the exception of car accidents or high trauma loads such 
as falling from a high place [12]. On the other hand, human 
bones can be subjected to moderate loads that occur during the 
lifting of something less than body weight several times a 
week as a part of daily life activities. As a result of walking 
and other activities in the daily life, the bones are also exposed 
to low loads daily. Such variety of loads regimes can cause 
both a traumatic bone fracture due to the exceeding bone`s 
yield strength and non-traumatic fracture due to the lower 
fracture toughness depending on bone quality. 

Hip fractures are one of the most common types of 
osteoporosis-related bone fractures. Approximately 90% of 
hip fractures occur due to falls from a standing height [12, 13]. 
From this point of view, considering hip fracture as a result of 
single high load exposure may simply lead to the conclusion 
that the hip fractures are directly related to the insufficiency of 
bone strength. Although this can be true to some extent, recent 
studies also highlighted the possibility of involving micro-
cracks in fracture event. In such perspective, micro-cracks at 
the stress concentration areas such as the Haversian canals and 
cement line may occur during the previous fall that did not 
result in a fracture or during other activities that the bones 
were exposed to moderate loads. Such micro-cracks in the 
stress concentration areas may then cause sudden and rapid 
growth in cracks which turn into bone fracture during the last 
falls or other activities [13, 14]. Therefore, it can be concluded 
that hip fractures can be considered as a form of fracture that 
occurs with involving both insufficiencies of bone strength 
and fracture toughness. 

Atypical femur fractures, which are caused by long-term 
use of drugs that inhibit bone resorption, usually occur with a 
rapid and sudden transverse growth of a single crack after 
feeling bone pain related to the accumulation of damage into 
the bone [15, 16]. In terms of a biomechanical perspective, 
these fractures are emerged by uncontrolled crack growth 
during a single medium load following damage accumulation 
(i.e., micro-cracks accumulation) in the bone when the bone 
has lower fracture toughness [17]. Therefore, atypical femur 
fractures are mostly considered as a form of bone fracture that 
occurs due to the insufficiency of fracture toughness.  

IV. CONCLUSION 

Many studies have been established the correlation between 
bone strength and BMD [18, 19], which is currently used as 
the gold standard in the diagnosis of osteoporosis as well as in 
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assessing bone fracture risk. However, the relationship 
between BMD and fracture toughness has been reported to be 
weak [9, 20]. As also discussed in the previous studies [11, 13, 
15, 17], every bone fracture-associated with aging and 
diseases is not a form of fracture occurring as a result of 
decreasing in bone strength. On the other hand, numerous 
animal studies on understanding the mechanisms leading to 
bone fractures or studies testing a new form of drugs/treatment 
often examine the structural properties of bone and BMD. 
Such studies do not mostly report mechanical properties of 
bone or only report the strength of whole bone. Since not all 
bone fractures are caused by the same failure mechanism (e.g., 
insufficiency of bone strength), the studies that exclude the 
examination of material/mechanical properties only provide us 
limited understanding on the causes of bone fractures.  
Focusing on solely changes in BMD, architectural structure or 
rarely bone strength may result in an incomplete conclusion. 
Therefore, focusing on fracture toughness along with bone 
strength can help us to better understand the causes of bone 
fractures and to develop new forms of diagnosis and 
treatment. In this respect, considering the possible 
relationships discussed above with respect to the bone 
fractures, it would be useful to report fracture toughness of 
bone. Such studies can be further ensured that the relationship 
of fracture toughness with clinical bone fractures is 
experimentally proved.  
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